Machine Learning for High-Throughput Stress Phenotyping in Plants.
نویسندگان
چکیده
Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits.
منابع مشابه
High-Throughput Robotic Phenotyping of Energy Sorghum Crops
Plant phenotyping is a time consuming, labour intensive, error prone process of measuring the physical properties of plants. We present a scalable robotic system which employs computer vision and machine learning to phenotype plants rapidly. It maintains high throughput making multiple phenotyping measurements during the plant lifecycle in plots containing thousands of plants. Our novel approac...
متن کاملImage analysis and machine learning based methods for disease detection in soybeans
Plant phenotyping is important for genetic enhancements and plant biology research. There is a lot of work done to improve yield of crop plants, by selecting good genotypes to cross-breed in an effort to curb diseases or genetic deficiencies in these crops. In order to select these genotypes, one would have to perform phenotyping. Currently, plant phenotyping is based on visual assessment, wher...
متن کاملNootropic Medicinal Plants; Evaluating Potent Formulation By Novelestic High throughput Pharmacological Screening (HTPS) Method
The principle of this method was to screen the pharmacological activity of six prepared polyphyto formulations by using high throughput screening method for their nootropic action. The study was performed in three stages using one, two and three animals, respectively in a group. Test formulations were given p.o daily at the dose of 50 and 100 mg/kg body weight. The test formulations were compar...
متن کاملDeep Phenotyping: Deep Learning for Temporal Phenotype/Genotype Classification
High resolution and high throughput, genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. Complex developmental phenotypes are observed by imaging a variety of accessions in different environment conditions, however extracting the genetically heritable traits is challenging. In the recent years, deep learning techniques and in particular Convolutio...
متن کاملAdd-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations
This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in plant science
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2016